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Vehicle Speed Estimation with Non-stationary Camera

Gaofeng Su

Abstract

Vehicle speed estimation plays a vital role in traffic man-
agement, data analysis, and Intelligent Transportation Sys-
tems (ITS). While traditional speed sensing systems, such
as radar and laser-based technologies, offer high accuracy,
their hardware costs remain a significant barrier. In con-
trast, vision-based approaches are gaining attention due to
their relatively simple and cost-effective hardware require-
ments. However, most existing vision-based methods rely on
stationary cameras, limiting their flexibility and the scala-
bility of vehicle speed monitoring networks.

This paper proposes a simple, but effective homography-
based approach for vehicle speed estimation using a non-
stationary platform. The method utilizes vehicle keypoints
detection and computes the homography matrix. By warp-
ing the 2D velocity vector obtained from the optical flow
method, the actual vehicle speed is estimated with high ac-
curacy. This approach offers a flexible and cost-efficient
solution for vehicle speed monitoring.

1. Introduction

Vehicle speed monitoring plays a crucial role in traf-
fic management, as it can improve road safety. Accord-
ing to the San Francisco Municipal Transportation Agency
(SFMTA), San Francisco is introducing the Speed Safety
Cameras Program to enhance road safety [1]. Additionally,
with the growing interest in Intelligent Transportation Sys-
tems (ITS), on-road vehicle speed estimation can provide
valuable traffic speed data for further analysis by ITS.

Traditional speed camera monitoring systems typically
rely on expensive hardware such as radar, lidar, and vi-
sion cameras, which makes scaling a speed safety camera
network challenging. With modern CPUs becoming more
powerful and the advancement of computer vision technol-
ogy, lots of research has been conducted on vision-based
vehicle speed estimation methods [2]. However, most of
these vision-based method are designed to works on station-
ary speed cameras. Relying on a stationary camera reduces
the flexibility and scalability of the vehicle speed monitor-
ing networks since the cost of the speed camera system is

still relatively high.

One idea is to use non-stationary platforms such as
phone cameras, which are low-cost and easy to set up to
capture videos, to perform vehicle speed estimation. This
not only introduces a new form of speed-sensing modality
but also makes this sensing network more flexible and scal-
able.

Traditionally, use the camera to perform vehicle speed
estimation, one key component is the camera parameters
(i.e., the intrinsic and extrinsic matrix)[2]. For stationary
cameras, this parameter can be calibrated offline, but this
is tricky for non-stationary cameras as the extrinsic matrix
changes over time and is hard to calibrate in real-time. Re-
search has been done using sophisticated pipelines such as
reconstructing 3D bounding boxes of vehicles to estimate
speed. This paper proposed a simple method based on ho-
mography and warping technique but could yield relatively
high accuracy. The paper is arranged as follows: Section 2
explains the methods and processing pipeline, section 3 will
briefly describe the experiment setup section 4 is about re-
sults discussion, and Section 5 is the conclusion and future
work.

2. Methodology
2.1. Relating Vehicle Speed with Homography

The key to the proposed method is that two images can
be related by homography if the object/scene being captured
lies on a single plane, even if the camera is not at the same
center of projection (COP). Note that this observation still
holds even if the extrinsic matrix of the camera changes.

This approach is commonly used in many stationary
camera calibration methods. Typically, people either use a
known planar object to calibrate the camera or assume that
the road is a plane and utilize known road features, such as
traffic lines, for calibration. The challenge arises in scenar-
ios involving a hand-held camera, where obtaining a clear
view of the road surface can be quite difficult. Furthermore,
this method relies on well-maintained roads to ensure the
visibility of these features, which might not always be real-
istic.

However, we can approach this problem from a different
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Figure 1. Common speed estimation pipeline, image adapted from
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Figure 2. Extract road features to find parallel lines, horizon etc.
image adapted from [6]

perspective. Instead of relying on the road surface, we can
approximate the side of the vehicle as a single plane. Since
we are estimating the vehicle’s speed, we must observe it
from our point of view, which makes it more likely that we
will see the side of the vehicle.

Using homography and warping, we can compute the ve-
locity derived from optical flow. However, this approach
relies on one key assumption: the vehicle’s speed must be
aligned with the plane of its side. Below is a less formal
explanation:

Denoted a vehicle keypoint on image & as sg, the same
keypoint on image k£ 4 1 as sx41, let the matching keypoint
be s, and the computed homography matrix to be Hj, and
Hj, 11 respectively. We have:

WES = Hksk (1)

Wr415 = Hpp18541 ()

The speed vector from the optical flow is:

1 1, _
0= (s — st) = 2 (Hfywpas — Hy fwgs) ()

dt

Since the speed vector and the homography matrix are
computed independently, there is a constraint on the result-
ing scaling factors w1 and wy. As the scaling factor con-
trols the depth of the points, and the optical flow tracks the
surface of the vehicle, this constraint implies that the actual
speed must be aligned with the plane of the vehicle’s side to
correctly use the homography for warping the speed vector
derived from optical flow.

2.2. System Pipeline

Based on this idea, the following pipeline is proposed
(see Figure 3). The input to the system consists of a video
stream and a predefined vehicle keypoint template with
known dimensions.

The first step is to compute the dense optical flow map.
We used OpenCV'’s implementation of Gunnar Farneback’s
dense optical flow algorithm [5]. Simultaneously, a key-
point detector identifies vehicles and detects keypoints in
the current image. These keypoints are then matched with
the predefined template to extract only the side plane key-
points. If more than four keypoints are available, the ho-
mography matrix can be computed and used to transform
the speed vector at these keypoints. Ideally, the transformed
speed vectors should all point horizontally (i.e., zero on the
vertical axis). After obtaining the speeds of all observed
keypoints, the final vehicle speed is calculated as the aver-
age of these keypoint speeds.

2.3. About Vehicle Template and Detection Model

Machine-learning-based keypoint detection models have
proven to be robust in detecting vehicle keypoints with se-
mantic meaning,” such as the “center of front/rear wheels”
or the ”corners of windows.” However, developing a univer-
sal model that accommodates all vehicle types with realistic
mechanical dimensions remains challenging. In this paper,
we use the OpenPifPaf car keypoint detection model [3],
which is based on a 66-keypoint sedan template (see Figure
4).

3. Experiment

To evaluate the proposed method and pipeline, we col-
lected four hand-held camera recordings and performed
speed estimation offline. The videos were recorded at 60
fps with a resolution of 2160 x 3840 pixels. To accelerate
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Figure 3. Proposed system pipeline
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Figure 4. 66-keypoints sedan model, image adapted from [4] . The
target keypoint is highlighted in yellow.

processing, the resolution was reduced to 540 x 960 pix-
els. Each video is approximately 3 seconds long. A speed
gun was also used to measure the actual vehicle speed, pro-
viding ground truth data. Figure 5 illustrates the estimated
speed and the transformed speed vector for Vehicle 1.

Below is a comparison between the estimated vehicle
speed from hand-held camera footage and the speed gun
measurements.

4. Result and Disccusion

The experiments of estimating speed of vehicles 1-3
demonstrate that the proposed method has relatively high
accuracy. While the estimation for Vehicle 3 may seem in-
accurate at first glance, a careful analysis of the footage re-
vealed that Vehicle 3 was slowing down due to the traffic
signal turning red. Therefore, although we could not pro-
vide a continuous ground truth, this result is reasonable in
this context.

Another observation is that, after some time, the esti-
mated speed dramatically changed, yielding incorrect re-
sults. This occurred because, as the car drove further from
the camera, the viewing angle to the side of the vehicle
became very narrow, making it difficult to detect many
features. The features that were detected became nearly
collinear, leading to singularity or near-singularity issues
when solving the homography matrix, as illustrated in Fig-

ure ??. This limitation of the proposed method could po-
tentially be mitigated by adding more keypoints (e.g., addi-
tional keypoints on the wheels).

5. Conclusion and Future Work

This paper proposes a simple and effective method to es-
timate vehicle speed on a non-stationary platform by treat-
ing the side of the vehicle as a single plane, matching key-
points to a predefined template, and transforming the speed
vector from optical flow. The hand-held camera experi-
ments demonstrate that the proposed method can accurately
measure speed when “good features” of the vehicle are de-
tected. One limitation is that, as the vehicle moves away
from the camera and the viewing angle to the side of the
vehicle narrows, the estimation becomes unreliable. This
could potentially be mitigated by adding more keypoints to
the vehicle model.

Currently, we are using a pre-trained sedan keypoint
model. However, this can be improved by training a key-
point detection model tailored to specific types of vehi-
cles, enabling us to detect and estimate the speed of not
only sedans but also SUVs, trucks, and buses. Additionally,
customizing the keypoint model by adding more keypoints,
such as those on the wheels, might make the method more
robust against poor viewing angles.
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Figure 5. Speed estimation example of vehicle 1. Speed vectors are marked by red arrow, and keypoints are marked in blue circles.
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Figure 6. Estimated speed of vehicle 1 in footage recorded by a
hand-held camera.
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Figure 7. Estimated speed of vehicle 2 in footage recorded by a
hand-held camera.
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